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ABSTRACT

In this paper, a mathematical model is proposed for analytical study of plant growth subjected to the 
effect of toxic metal. The associated state variables are plant biomass, concentration of nutrients and 
concentration of toxic metal in the soil. The assumption is that the toxic metals present in the soil 
interferes with nutrient availability and hence, adversely affect the plant’s growth. This effect is studied 
by introducing the time-lag (delay) in consumption and utilisation coefficient due to less availability 
of nutrients in the presence of toxic metal. The inclusion of delay disturbed the stability of the interior 
equilibrium of the system and Hopf bifurcation occurred at the critical value of delay parameter. Further, 
the direction, stability and period of these bifurcating periodic solutions are also studied as well as 
sensitivity analysis of state variables with respect to model parameters. Numerical simulation support 
analytical results using MATLAB. 

Keywords: Concentration of nutrients, delay, Hopf bifurcation, plant biomass, toxic metal, simulation

INTRODUCTION

Plants need carbon, hydrogen, and oxygen, 
water and other nutrients which come from soil 
for growth. Nutrients are components in food 

that an organism uses to survive and grow. 
Plant-soil interaction means the mechanism 
in which the plants take essential nutrients 
from the soil through their roots which leads 
to growth of plants. A low concentration 
of heavy metals is necessary for growth of 
plants, but excess of these metals adversely 
affect the soil quality and hence retards plant 
growth. Thornley (1976) is the first to apply 
mathematical modelling to wide range of 
subjects in plant physiology to predict effect 
of factors such as temperature, humidity, 
radiation input and concentration of CO2 on 
process rates of respiration, photosynthesis, 
transpiration, fluid transport and stomatal 
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responses. Lacointe (2000) reported that that models suggested by Thornley were designed for 
a particular plant species and under particular conditions, so they could not be applicable to a 
wider range of conditions.  Deleo et al. (1993) gave a simple model that coupled the effect of 
toxic metal and soil chemistry to study the adverse effect of toxic metal on biomass of trees. 
Guala et al. (2010, 2013) further modified the parameters of the model given by Deleo to show 
the model was applicable to not only trees, but all plants in general. Misra and Kalra (2012) 
studied how the toxicity of heavy metals could adversely affect the growth of a plant using a 
two-compartment mathematical model. Rouches theorem (1960) explains distribution of roots 
of exponential polynomials. Ruan and Wei (2001) used Rouches theorem for the discussion of 
distribution of roots of exponential polynomials. Kubiaczyk and Saker (2002) studied stability 
and oscillations in system of non-linear delay differential equations of population dynamics. 
Ruan and Wei (2003) used Rouches theorem for the discussion of distribution of roots of 
exponential polynomials for study of stability involving delays. Naresh et al (2014) studied the 
effect of toxicant on plant biomass with time delays. Shukla et al (1996) studied the effect of 
environmentally degraded soil by rain water and wind on crop yield. Sikarwar (2012) studied 
the effect of time delay on the dynamics of a multi team prey predator system. Naresh et al. 
(2006) studied the effect of an intermediate toxic product formed by uptake of a toxicant on 
plant biomass. Huang et al. (2016) studied analysis for global stability of system of non-linear 
delay differential equations involving population growth. Zhang et al. (2009) studied the 
distribution of the roots of a fifth-degree exponential polynomial with applications to a delayed 
neural network model. The explicit formulae is derived for determining the properties of the 
Hopf-bifurcation at the critical value using the normal form theory and manifold reduction 
(Hassard et al.,1981). Bocharov and Rihan (2000) came up with adjoint and direct methods for 
sensitivity analysis in numerical modelling in biosciences using delay differential equations. 
Rihan’s (2003) sensitivity analysis for dynamic systems with time-lags using adjoint equations 
and direct methods when the parameters appearing in the model showed they were not only 
constants but also variables of time. Banks, Robbins and Sutton (2012) presented theoretical 
foundations for traditional sensitivity and generalised sensitivity functions for a general class 
of nonlinear delay differential equations. Theoretical results for sensitivity are presented with 
respect to the delays. Ingalls, Mincheva and Russel (2017) developed a parametric sensitivity 
analysis for periodic solutions of delay differential equations. Kalra and Kumar (2017) studied 
the role of time lag in plant growth dynamics using a two-compartment mathematical model. 
Over the last decade, a lot of work has been done in the field of plant soil interaction under 
the effect of toxic metals. Till date, delay differential equations have not been prominently 
used in the field of soil-plant dynamics and agriculture. In view of the above, a mathematical 
model is proposed for the study of plant growth by introducing delay parameter in containing 
consumption and utilisation coefficient and complex behaviour giving rise to Hopf bifurcation. 
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MATHEMATICAL MODEL

The plant growth dynamics is governed by the following system of non-linear delay differential 
equations involving three state variables: Concentration of nutrients N in the plant, amount of 
plant biomass W and concentration of toxic metal M in the soil .

                 [1]

                   [2]

                   [3]

With initial conditions N(0)>0, W(0)>0, M(0)>0 for all t and N (t - τ )= constant for .

The parameters defined are : KN is the availability of total nutrients and (KN-KNM M) is the 
supply of nutrients hindered due to presence of toxic metal. α is the consumption coefficient. 
β is the utilisation coefficient for nutrients. γ is the depletion of M due to interaction between 
M and N. I is the intake of toxic metal M in the soil. δ1, δ2, δ3 are natural decay rates of N,W 
and M respectively. Here, all the parameters α, β, γ, KN, KNM, I, δ1, δ 2, δ3 are taken as positive.

BOUNDEDNESS

The boundedness of solutions of the model given by (1) -(3) is given by the lemma stated below:

L e m m a  1 .  T h e  m o d e l  h a s  a l l  i t s  s o l u t i o n  l y i n g  i n  t h e  r e g i o n 
 as t→∞, for all positive 

initial values  = Constant for all , where 
 

Proof: Consider the following function: 

U s i n g  E q u a t i o n s  ( 1 )  - ( 2 )  a n d   a s s u m i n g  t h a t 

Applying the comparison theorem, as 

So, 
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From equation (3): 

 , then by usual comparison theorem, when 

So,  

POSITIVITY OF SOLUTIONS

Positivity means that the system sustains. For positive solutions, one needs to show 
that all solution of system given by Equations. (1)– (3), where initial condition is 

 for all t and N (t - τ) = constant for  , the solution 
 of the model stays positive for all time t > 0.

From equation (3): 

, here c1 is constant of integration. So, M > 0 for all t.

Similar argument holds for N and W.

INTERIOR EQUILIBRIUM OF MODEL

We calculate an interior equilibrium E* of model. The system of equations (1) -(3) has one feasible 
equilibrium E* (N*,W*,M*) where  , .

Theorem 1. Consider the exponential polynomial:

Where τi ≥ 0 (i = 0,1,2,…,m) and Pj
i (i = 0,1,2,…m :j = 1,2,…n) are constants. As (τ1,τ2,…,τm) 

vary, the sum of the orders of the zeros of exponential polynomial f(λ,e-λτ1 ,….,e-λτm) on the open 
right half plane can change only if a zero appears on or crosses the imaginary axis.

This result has been proved by Ruan and Wei [10,12] by using Rouches theorem.

STUDY OF INTERIOR EQUILIBRIUM AND LOCAL HOPF-BIFURCATION

Here, the dynamic behaviour of the interior equilibrium points E* (N*, W*, M*) of the model 
given by (1) -(3) is analysed. The exponential characteristic equation about equilibrium E* is 
given by:

                [4]
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Where 
 

      

Clearly m1,m2,m3,n1,n2,n3 are all positive.

Clearly λ=iω is a solution of equation (4) if and only if 

              [5]

Separating real and imaginary parts:

               [6]

                  [7]

W h i c h  g i v e s :   
               [8]

Let a =  

Let  , then equation (8) becomes:           [9]

Claim 1. If c<0, Equation (9) contains at least one positive real root.

Proof. Let  

Here  ,  such that h(y0 )=0.Proof 
completed. 

Claim 2. If c ≥ 0, then necessary condition for equation (9) to have positive real roots is 
D=a2-3b≥0.

Proof. Since h(y)=y3+ay2+by+c, therefore h’ (y)=3y2+2ay+b

      h’ (y)=0 implies 3y2+2ay+b=0            [10]

The roots of equation (10) can be expressed as         [11] 
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If D<0, then equation (10) does not have any real roots. So, the function h(y) is monotone 
increasing function in y. It follows from h(0)=c≥0 that equation (9) has no positive real roots. 

Clearly if D≥0, then  is local minima of h(y). Thus the following claim.

Claim 3. If c≥0, then equation (9) has positive roots if and only if y1>0 and h(y1)≤0 . 

Proof. The sufficiency is obvious. Only necessity needs to be proved. Otherwise, assume that 
either y1≤0 or y1>0 and h(y1 )>0 .If y1≤0, since h(y) is increasing for y≥y1 and h(0)=c≥0, it follows 
that h(y) has no positive real zeros. If y1>0 and h(y1)>0, since  is the local maxima 
value, it follows that h(y1 )≤h(y2). Hence, h(0)=c≥0, As h(y) does not have positive real roots. 

Lemma 2. Suppose y1 is defined by equation (11).

(I) If c<0, Equation (9) contains at least one positive real root.

(II) If c≥0 and D=a2-3b<0, then equation (9) has no positive roots.

(III) If c≥0, then equation (9) has positive roots if and only if y1>0 and h(y1)≤0. Proof. 
Suppose that equation (9) has positive roots. Without loss of generality, assume that it has 
three positive roots, denoted by y1,y2,y3. Then equation (8) has three positive roots, say 

From (7) sin  Which gives  

Let  

Then is a pair of purely imaginary roots of equation (8)

Where 1,2,3,4.

Thus, define         [12]

Lemma 3. Suppose that m1>0,(m3+d)>0,m1 m2-(m3+d)>0.

(I) If c≥0 and D=a2-3b<0, then all the roots of equation (4) have negative real parts for all 
τ≥0.

(II) If c<0 or c≥0, y1>0 and h(y1)≤0, then all the roots of equation (4) have negative real parts 
for all 

Proof. When τ=0, equation (4) becomes

               [13]
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Based Routh-Hurwitz’s criteria, (H1): All roots of equation (5) have negative real parts if and 
only if (m3+n3)>0,(m1+n1)(m2+n2)-(m3+n3)>0.

If c≥0 and D=a2-3b<0, Lemma 2 (II) shows that equation (4) has no roots with zero real part 
for all τ≥0.  When  c<0  or  c≥0,  y1>0  and  h(y1)≤0,  Lemma 2 (I)  and  (III)  imply  that  when 
τ ≠ τk

(j), k=1,2,3.;j≥1, equation (4) has no roots with zero real part and τ0 is the minimum value 
of τ so that the equation(4) has purely imaginary roots. Applying theorem 1, the conclusion 
of the lemma is obtained.

      Let             [14]

be the roots of equation (4) satisfying: 

In order to guarantee that  are simple purely imaginary roots of equation (4), with τ=τ0 
and λ(τ) satisfies transversality condition, assume that h’ (y0 )≠0. 

Lemma 4. Suppose y0=ω0
2. If τ=τ0, Then Sign =Sign [h’ (y0)]

Proof. Putting λ(τ) in equation (4) and differentiating w.r.t τ, it follows that

      

Then 

From equations (6) -(8):

                    

      

Where . Here ∆ >0 and ω0>0.

It is concluded that Sign [ψ’ (τ0)]=Sign [h’(y0)].This proves the lemma.

DIRECTION AND STABILITY OF HOPF-BIFURCATING SOLUTION

In the previous section, a family of periodic solutions is obtained that bifurcate from the positive 
steady state E* at the critical values of τ. It is also worthwhile to determine the direction, stability 
and period of these bifurcating periodic solutions. In this section, an explicit formula will be 
derived to determining the properties of the Hopf-bifurcation at the critical value τj, using the 
normal form theory and manifold reduction due to Hassard, Kazarion and Wan (1981).
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Let  and normalising the delay τ by time scaling 
 equations (1) -(3) are transformed into

              [15]

                [16]

                [17]

Thus, work can be done in phase  Without loss of generality, denote the 
critical value τj by τ0. Let τ=τ0+μ, then μ=0 is a Hopf-bifurcation value of the system given by 
equations (17) -(19). For the simplicity of notations, rewrite this system as

                  [18]

Where  is defined by  and 

 are given, respectively by 

And  respectively where 

 

Based on the Riesz representation theorem, there exist a function η(θ,μ) of bounded variation 
for , such that  for 
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Instead, choose 

Here δ is the Dirac delta function. For  define

 And 

Then the system (18) is equivalent to 

                  [19]

For  define

 And bilinear inner product 

              [20]

Sine A* and A=A(0) are adjoint operators and iω0 are eigen values of A(0). Thus they are eigen 
values of A*. Suppose that  is an eigen vector of A(0) corresponding to the 
eigen value iω0. Then A(0)= iω0 q(θ). When θ=0, 

 which yields  where

 and 

Similarly, it can be verified that  is the eigen value of A* 
corresponding to  where

 and  
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In order to assure <q* (s),q(θ)> =1, the value of D needs to be determined.

From equation (22), <q* (s),q(θ)> 

      

Hence, choose 

such that  

Following the algorithm given by Hassard et al., (1981) and using the same notations as there 
to compute the coordinates describing the centre manifold C0 at μ=0. Let ut be the solution of 
equation (18) with μ=0. Define

             [21]

On the centre manifold 

Where 

z and  are local coordinates for centre manifold C0 in the direction of q* and  . Note that W 
is real if ut is real. Consider only real solution. For solution  of equation (20), since μ=0,

      

Rewrite this equation as 

                  [22]

Where 

                   (23)
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As  

 

     
Thus, comparison of coefficients with equation (23) gives:

In order to determine g21, focus needs to be on computation of W20 (θ) and W11 (θ). From 
equations (19) and (21): 

  

Let               [24]

Where ,      [25]

On the other hand, on C0 near the origin 

Expanding the above series and computing the coefficients, we get

         [26]
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By equation (22), for 

Comparing the coefficients with (23) for  that 

.

From equations (22), (25) and the definition of A we obtain

Solving for W20 (θ):

 

And similarly

Where E1 and E2 are both three dimensional vectors, and can be determined by setting θ=0 in 
H. In fact since  ,

So

Where  

Hence combining the definition of A, 

 and 

Notice that 

 and
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implies

Hence, 

Thus g21 can be expressed by the parameters.

Based on the above analysis, each gij can be determined by the parameters. Thus, following 
quantities can be computed:

      [27]

Theorem 2. The value of μ2 determines the direction of the Hopf bifurcation: if μ2>0(μ2<0), 
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions 
exist for τ>τ0 (τ<τ0). The value of β2 determines the stability of bifurcating solutions: the 
bifurcating periodic solutions are orbitally asymptotically stable (unstable) if β2<0 (β2>0). The 
value of T2 determines the period of the bifurcating periodic solutions: the period increases 
(decreases) if T2 >0 (T2 <0 ).

SENSITIVITY ANALYSIS OF STATE VARIABLES WITH RESPECT TO 
MODEL PARAMETERS

In this paper, the model includes constant parameters. The ‘Direct Method’ to estimate the 
general sensitivity coefficients is used. The direct method is based on considering all parameters 
as constants and then the sensitivity coefficients are estimated by solving sensitivity equations 
simultaneously with the original system. If all the parameters (α,β,γ) appearing in the system 
model (1)– (3) are taken to be constants, then sensitivity analysis, in this case, may just entail 
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finding the partial derivatives of the solution with respect to each parameter. As an illustration 
if consider parameter β, then partial derivatives of the solution (N,W,M) with respect to β give 
rise to following set of sensitivity equations:

        [28]

         [29]

            [30]

Where 

Then, this system of sensitivity equations (28) – (30) along with the original system of equations 
(1) – (3) is solved to estimate the sensitivity of the state variables (N,W,M) to the parameter β. 
The similar procedure and argument holds for estimating the sensitivity of the state variables 
with respect to the parameters α and γ.

Sensitivity of Variables to Parameter α 

As shown by Figures 1 and Figure 2, the parameter consumption coefficient α does not lead 
to much of variation and change in the values of state variables nutrient concentration N and 
concentration of toxic metal M which ultimately remain stable and tens to zero, as we decrease 
the values of α from α=0.9 to α=0.5. It predicts the lesser sensitivity of state variables N and 
M to the parameter α. However, for the same range of values of α, the state variable amount of 
plant biomass W undergoes under considerable change as shown by Figure 3. It shows increase 
in the rate of plant biomass with decrease in the delayed value of consumption coefficient. It 
remains stable as well.

23	

toxic metal with decrease in values of depletion coefficient of toxic metal 

due to interaction with nutrients. It stays stable. Figure 9 shows increase in 

rate of plant biomass with decrease in values of depletion coefficient of 

toxic metal due to interaction with nutrients. It remains stable as well. 

 

 

  

Figure 1. Time series graph between partial changes in nutrient 

concentration 𝑁𝑁 for different values of consumption coefficient 𝛼𝛼 
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Figure 1. Time series graph between partial changes in nutrient concentration N for different values of 
consumption coefficient α
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Figure 2. Time series graph between partial changes in concentration of 

toxic metal 𝑀𝑀 for different values of consumption coefficient 𝛼𝛼 
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Figure 2. Time series graph between partial changes in concentration of toxic metal M for different values of 
consumption coefficient α
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Figure 3. Time series graph between partial changes in plant biomass 𝑊𝑊 for 

different values of consumption coefficient 𝛼𝛼 
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Figure 3. Time series graph between partial changes in plant biomass W for different values of consumption 
coefficient α

Sensitivity of Variables to Parameter β 

Initially, the rate of nutrient concentration starts losing stability with decrease in value of 
utilisation coefficient, but finally becomes stable and tends to be zero as we decrease the values 
of parameter utilization coefficient β from β=0.7 to β=0.3 as shown by Figure 4. Figure 5 shows 
the increase in rate of concentration of toxic metal M with decrease in value of utilisation 
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Figure 4. Time series graph between partial changes in nutrient 

concentration 𝑁𝑁 for different values of utilisation coefficient 𝛽𝛽 
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Figure 4. Time series graph between partial changes in nutrient concentration N for different values of 
utilisation coefficient β
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Figure 5. Time series graph between partial changes in concentration of 

toxic metal 𝑀𝑀 for different values of utilisation coefficient 𝛽𝛽 
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Figure 5. Time series graph between partial changes in concentration of toxic metal M for different values 
of utilisation coefficient β

coefficient β from β=0.7 to β=0.3. It starts losing stability as well. Decrease in the rate of plant 
biomass W with decreased value of delayed utilisation coefficient is shown in Figure 6. It also 
starts losing stability.
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Figure 6. Time series graph between partial changes in plant biomass 𝑊𝑊 for 

different values of utilisation coefficient 𝛽𝛽 
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Figure 6. Time series graph between partial changes in plant biomass W for different values of utilisation 
coefficient β

Sensitivity of Variables to Parameter γ 

Figure 7 shows nutrient concentration n is not very much affected by decease in values of 
depletion coefficient γ from γ=0.2 to γ=0.05. It does not lose stability. Figure 8 shows decrease 
in rate of concentration of toxic metal with decrease in values of depletion coefficient of toxic 
metal due to interaction with nutrients. It stays stable. Figure 9 shows increase in rate of plant 
biomass with decrease in values of depletion coefficient of toxic metal due to interaction with 
nutrients. It remains stable as well.

29	

 

Figure 7. Time series graph between partial changes in nutrient 

concentration 𝑁𝑁 for different values of depletion coefficient  𝛾𝛾  
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Figure 7. Time series graph between partial changes in nutrient concentration N for different values of 
depletion coefficient γ 
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Figure 8. Time series graph between partial changes in concentration of 

toxic metal 𝑀𝑀 for different values of depletion coefficient  𝛾𝛾  
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Figure 8. Time series graph between partial changes in concentration of toxic metal M for different values 
of depletion coefficient γ 
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Figure 9. Time series graph between partial changes in plant biomass 𝑊𝑊 for 

different values of depletion coefficient  𝛾𝛾  
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Figure 9. Time series graph between partial changes in plant biomass W for different values of depletion 
coefficient γ 
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Figure 10. The interior equilibrium point  𝐸𝐸!(1.1426,0.5181,0.7950) of 

the system is stable when there is no delay that is 𝜏𝜏 = 0 
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Figure 10. The interior equilibrium point E1 (1.1426,0.5181,0.7950) of the system is stable when there is no 
delay that is τ=0

NUMERICAL EXAMPLE

To consolidate the analytical result with the help of a numerical, simulation is done with 
MATLAB. For the following set of values, the behaviour shown by the system is as follows:

KN=1,KNM=0.3,α=0.9,δ1=0.2,β=0.7,δ2=0.8,I=0.5,γ=0.2,δ3=0.4.

The behaviour of the system for different values of delay is expressed as:

E1 (N*=1.1426,W*= 0.5181,M*= 0.7950) 

34	

 

 

Figure 11. When delay 𝜏𝜏 < 1.373, the interior equilibrium point 

𝐸𝐸! 1.1426,0.5181,0.7950 is asymptotically stable 
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Figure 11. When delay τ<1.373, the interior equilibrium point E1 (1.1426,0.5181,0.7950) is asymptotically 
stable
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Figure 12. Phase space diagram of Nutrient N, Plant Biomass W and Toxic 

Metal M when delay 𝜏𝜏 < 1.373 
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Figure 12. Phase space diagram of Nutrient N, Plant Biomass W and Toxic Metal M when delay τ<1.373
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Figure 13. The interior equilibrium point 𝐸𝐸!(1.1426,0.5181,0.7950)losses 

its stability and Hopf- bifurcation occurs when delay 𝜏𝜏 ≥ 1.373 
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Figure 13. The interior equilibrium point E1 (1.1426,0.5181,0.7950)losses its stability and Hopf- bifurcation 
occurs when delay τ≥1.373
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Figure 14. Phase space diagram of Nutrient N, Plant Biomass W and Toxic 

Metal M when delay 𝜏𝜏 ≥ 1.373. The bifurcating periodic solution is 

orbitally, asymptotically stable 
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Figure 14. Phase space diagram of Nutrient N, Plant Biomass W and Toxic Metal M when delay τ≥1.373. The 
bifurcating periodic solution is orbitally, asymptotically stable
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CONCLUSION

In this paper, a mathematical model is proposed to study the role of delay on plant growth 
dynamics under the effect of toxic metal. The stability and Hopf- bifurcation about the 
interior equilibrium is studied. It has been concluded that when there is no time delay, interior 
equilibrium E1 (1.1426,0.5181,0.7950) is completely stable (Figure 10) as proved by lemma 
3 using Routh-Hurwitz’s criteria. But under the same set of parameters, a critical value of the 
parameter delay is obtained below which the system is asymptotically stable (Figure 11 and 
Figure 12) and unstable above that critical value of parameter (Figure 13 and Figure 14) as 
proved by lemma 2 and lemma 4. While passing through the critical value, the system shows 
oscillations that is Hopf bifurcation. 

In this paper, the sensitivity of model solutions due to perturbing the parameters appearing 
in delay differential systems is also investigated using direct method. It is shown how the 
sensitivity functions enable one in identification of specific parameters and improve the 
understanding of the role played by specific model parameters. The oscillation and change in 
values accompanied by the sensitivity of state variables to parameters means that the solution 
is sensitive to changes in the parameter and that parameter plays an important role in the model. 
Sensitivity analysis reveals that the state variable nutrient concentration N is least sensitive to 
all parameters (α,β,γ) compared with other two state variables W and M who show considerable 
amount of change in their rates for different sets of values of the parameters. Rate of plant 
biomass shows increase with decrease in the delayed value of consumption coefficient and 
stays stable (Figure 3) and decreases with decrease in delayed value of utilisation coefficient 
and loses stability (Figure 6). 

This theoretical model as well as numerical results show that for a certain threshold of 
parameters, the system possesses asymptotic stability around positive interior equilibrium. 
Further from stability analysis and numerical simulation, it is concluded that τ is a bifurcating 
parameter for which the interior equilibrium point shows stable oscillatory behaviour when 
τ≥ τ0. After considering the effect of time lag in the system, limit cycles appear for interior 
equilibrium points when time delay crosses some critical value. 

In future, the efforts will be made to validate the proposed mathematical model with 
some existing plant growth data under the effect of toxic metals. The proposed mathematical 
model dealing with delay in plant soil dynamics under the effect of toxicant will be helpful to 
farmers, agriculturists, ecologists and scientists to use pesticides, insecticides and chemical 
fertilizers in an optimal way. The study of the factors due to which the delay is produced, 
and the components being affected will help the concerned community to plan the remedial 
measures. Being quantitative in nature, the mathematical model will prove to be economical 
in terms of time and money being invested on large scale experiments.
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